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q(7) = - yg_ 

Once the function G(r) is determined from the solution of 
equations (S), the hemispherical reflectivity R and the 
transmissivity T of the slab are determined according to 
the foregoing definitions from the following relations. 

1 dG(r,) T= __~. 
3n dz 

(10) 

(11) 

RESULTS 

Tables I and 2 show respectively the hemispherical 
reflectivity and the transmissivity of the slab obtained from 
the exact analysis and the Pi-approximation for several 
different values of the optical thickness, single scattering 
albedo and the boundary surface reflectivities. The absorp- 
tivity of the slab can also be determined from the data 
presented in these tables since the sum of the absorptivity, 
reflectivity and transmissivity is equal to unity. The exact 
analysis shows that the reflectivity of the slab is slightly 
higher with specularly reflecting boundary at 7: = r0 than 
with diffusely reflecting boundary. For optical thicknesses 
15 and larger the hemisphe~cal rellectivity is almost equal 
to that of a semi-in~n~te medium and transmissivity becomes 
almost zero. The results with the Pi-appro~mation. 
however, do not distinguish whether the reflectivity at the 
boundary surface z = r. is specular or diffuse. The Pi- 
approximation underestimates the hemispherical reflectivity, 
and the accuracy of this approximation is not so good for 
smaller values of o; for some cases w < 02 it has shown 
negative results which are meaningless. However, for w 
close to unity and large optical thicknesses the Pi-approxi- 
mation gives reasonably good results. 
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IN RECENT years, Monte Carlo methods have found wide 
acceptance as a too1 for solving radiation heat transfer 
problems, as debts for example, in Howell’s excellent 
survey paper [l]. The present paper describes a genemlixed 
Monte Carlo technique in which the energy content of a 
ray bundle is partitioned into two portions. One portion is 
governed by deterministic laws whereas the other portion is 
treated probabilistically, that is, by Monte Carlo methods. 
One of the advantages of the energy action approach 
is brought into focus when the heat transfer resulta are 
monitored continuously as the successive ray bundles are 
released from the emitting surface. Whereas the results 
from a conventional Monte Carlo solution may fluctuate 
substantially as s function of the number of rays, those from 
the energy partitioning approach are much more stable. In 
addition acceptable numerical results appear to be obtain- 
able with less computer time when the pa~tioni~~ approach 
is used. 

To illustrate the method, consideration is given here to 
the apparent emittance of isothermal-walled cavities, with 
specific numerical solutions for diffusely emitting and reflect- 
ing conical cavities. In general, the method is applicable 
to any situation where a portion of the energy content of a 
ray bundle is governed by dete~inisti~ laws. 

THE ENERGY PARTllTONLNG MEX’HOD 

Consider an i~the~~-w~l~ cavity (temperature T’) 
having wall area Al and wall graybody emittance l , with 
an aperture of area A,,. If E,, represents the radiant energy 
str~rn~g out of the aperture,? then the apparent emittance 
e0 is defined as 

f, = E,,,/uT4A, 0) 

where the denominator is the radiant energy that would 
stream from the cavity if a black surface at temperature T 
were stretched across the aperture opening, Evidently, 
the dete~ination of ea requires that E,, be found, 

In the Monte Carlo formulation, ray (or photon} bundles 
are envisioned as being released at various positions along 
the cavity wall. Each ray bundle is assigned an energy 
content E* given by 

E* = l aT4AJN @I 

where N is the number of bundles released. To provide 
perspective for the energy partitioning method, it is useful 
first to describe a conventional Monte Carlo treatment of 
the ray bundles. 

When a wall location is established at which a ray bundle 
is to be released the direction of departure is determined 

t As is customary, radiant energy that may have origin- 
ated in the environment outside the aperture is not included 

in 4”,. 

by drawing random numbers which Sx the angles 0 and d 
of a locally implanted spherical coordinate system. Then, 
the trajectory of the ray is traced and its point of impinge- 
ment on the cavity wall or on the plane of the aperture is 
computed. If the ray passes through the apertura, it is 
tallied, and attention is directed to the next emitted ray. 
On the other hand, if the ray strikes the cavity wall, a 
random number is drawn to establish whether it will be 
absorbed or reflected. If the ray is absorbed, no tally is 
made and consideration is given to the next ray; whereas 
if the ray is reflected, it continues its life cycle until it either 
exits from the cavity or is absorbed within the cavity. 

If N,, represents the number of rays that leave the cavity, 
then, taking account of equation (2}, it follows that EgU, = 
(N~~~N~uT4~~ and from equation (1) 

% = ANACIN) (A,,.&). (3) 

Note that only rays that leave the cavity am tallied. In 
many cases, N,,, may be a small fraction of N, so that N 
may have to be very large in order that No”, is large enough 
to constitute a statistically meaningful sample size. Also 
note that a ray trace, whi@ is the most time-consuming 
part of the computation procedure, is required even if a 
ray is absorbed or exits from the cavity. 

In contrast to the foregoing, in the partitioning approach 
each one of the ray bundles contributes to E,, and, in 
addition, the amount of ray tracing is decreased. The motiva- 
tion for the partitioning approach stems from the realization 
that Ennr cm be regarded as having two components. One 
component is the radiant energy which, subsequent to 
emission, streams from the cavity opening without interven- 
ing reflections at the cavity walls. The magnitude of this 
component can be calculated from geometrical considera- 
tions alone. The second component of SO,1 is the radiant 
energy which streams from the cavity after experiencing one 
or more reflections at the cavity walls. 

Tt appears reasonable to incorporate the aFor~eotion~ 
idea into tbe Monte Carlo formulation. Suppose that the 
wall location has been established at which the ith ray 
bundle is to be released. For that location, the fraction Fi 
of the emitted radiation which passes directly out of the 
aperture is known (i.e. F, is an angle factor). Then, the energy 
content E* of the ray bundle is partitioned into two portions, 
F,F and (1 - F,)E*. Of these, F,EL passes directly out of 
the aperture and is tallied. The other portion, (1 - FJE** 
remains within the cavity; but before tracing its trajectory, 
a random rmmber is selected to determine whether or not 
it will he absorbed at its point of impingement on the cavity 
walls. If absorption occurs, the ray traLu: is not performed 
and attention is directed to a new ray bundle. On the other 
hand, if the ray is not absorbed, its point of imp~~meot is 
determined. 

At the point of impingement, a second partitioning 
occurs. Let F,, denote the angle factor of the aperture as 
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seen from the point of impingement Then, the two par- 
titioned portions are (1 - F,)F,,E* and (I - F# - F,,)E*, 
the first of which leaves the cavity and is tallied. whereas the 
second portion remains in the cavity and continues its life 
cycle until absorption occurs. 

From the foregoing, it is seen that each ray bundle con- 
tributes at least one tally to the determination of EO”,. By 
employing equations (1) and (2) the apparent emittance 
can be evaluated from the energy partitioning approach as 

where Gi = 0. no reflections 
G, = (1 - FJ Fi, , one reflection 
Gi = (1 - FJF,, + (1 - F,)(l - FiI)F,,, two reflec- 
tions 

and so forth. It should also be noted that a ray trace is per- 
formed only when a ray bundle is reflected. 

The details of the partitioning method will be further 

TIME (ARBITRARY UNITS) 

As a prelude to the Monte Carlo computations, the 
angle factory Ffz) were evaluated at a large number of SUI-- 
i.tce locations 0 f z < L and then fitted to high accuracy 
with least-squares polynomials. For a typical surface 
location P at which the aperture subtends a solid angle Qa, 
one has 

F(z) = jcosHdD ,/jcosBdR. 

0, Zn 

With dD = sinB dff d#, equation (5) becomes 
n/2 

F(z) = (Z/x) 
j 

(b I cos @ sin D d@ 

5 

(5) 

16) 

where -#,(B, z) and #r(6, z) are the limits between which 
$ must he in order that a ray may pass out through the 
aperture. The angles 4, were found from the solution of a 
quadratic equation derived by writing the equation of a 
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FIG. 1. Apparent emittance results for a conical cavity with 
half apex angle of 20 degrees. 

0.72 

0.64 

illustrated by application to a conical cavity, which is ray originating at the point P and intersecting the run of 

pictured schematically in the lower portion of Fig. 1. The the aperture. With +t(B,z) thus determined, F(z) was 

sketch shows the coordinates and other dimensional evaluated numerically from (6). 

nomenclature. The surface location z at which a ray bundle is to be 
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released and the departure angles 8 and Q, were calculated 
from the expressions 

rlL = ,/I$, sin 6 = ,/RB, Cp = $, + 2R,(x - 4,) (7) 

where Rz, R, and R, represent random numbers. Absorp- 
tion of a ray bundle was determined by the condition 
Re Q a, where a is the graybody absorptance of the cavity 
wall. 

Further details of the computations are available from 
the authors. 

RESULTS AND DJSCUSSION 
Results for the apparent emittance were obtained both 

with the energy partitioning approach and the conventional 
Monte Carlo method. The computations were carried out 

from the energy partitioning and conventional Monte 
Carlo methods. The lower abscissa represents, in arbitrary 
units, the computer execution times for the runs at E = 0.9, 
whereas the upper abscissa represents, in other arbitrary 
units, the computer times for the E = 0.5 runs. Increasing 
values of the abscissa correspond to increasing numbers of 
ray bundles. The total number of ray bundles employed 
for each case is also indicated in the figure. 

Inspection of the figure indicates that e4 may fluctuate 
substantially as the number of ray bundles increases. This 
finding appears not to have been previously documented. 
It suggests the inadvisability of taking the output corres- 
ponding to a specific preselected number of ray bundles as 
the answer to the problem. A much safer course is to print 
out a continuous succession of results and examine them 

for cones having half apex angles w of 20” and 5” and for in detail as, for example, in Fig. 1. 
surface emittances e of 0.9 and 05 Preliminary calculations The comparison between the results from the partitioning 
were performed on a CDC 6600 computer to determine method and the conventional method is bigbly favorable to 
computational speeds using the internal system clock. the former. The fluctuations exhibited by the partitioning 
The final runs were made on an SDS 9300 computer. results are very much less, and this is especially evident for 

The l * results corresponding to w = 20” are presented in E = 0.9. Furthermore, to within five in the third signitlcant 
Fig. 1, with those for c = O-9 referred to the left-hand figure, the pa~itio~ng results converge much faster. Indeed, 
ordinate and lower abscissa, and those for E = 0.5 referred for both s = @9 and 05, convergence to this level of accuracy 
to the right-hand ordinate and upper abscissa. Closed and is attained at 0.1 on the time scales. 
open circles are used respectively to designate the results The solid lines in the figure represent the results of Lin 
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FIG. 2. Appareut emittance results for a conical cavity with 
half apex angle of 5 degrees. 
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[2] obtained from numerical solutions of integral equations. 
Agreement between the present results and those of Lin 
is seen to be good. 

A presentation of E, results for a cone half angle of 5” 
is made in Fig 2. The structure of this figure is similar to 
that of Fig. 1, and the findings are generally similar. As 
before, the fluctuations exhibited by the petitioning results 
are appreciably less than are those in the results from the 
conventional solution method. Also, the partitioning results 
converge more rapidly. 

The findings presented above indicate that the use of the 
energy partitioning approach may be highly advantageous 
in problems where a portion of the energy content of a ray 
bundle is governed by deterministic laws (e.g. geometrical 
angle factors). Another interesting outcome of the present 

work is the documentation of the fluctuations experienced 
by the Monte Carlo results as the number of rays is increased. 
This suggests that the output corresponding to a specific 
pre-selected number of ray bundles may not always be a 
proper representation of the results. 
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gravitational acceleration; 
heat transfer coefficient ; 
thermal conductivity; 
Prandtl number ; 
Reynolds number = 4F/p ; 
Schmidt number ; 
dimensionless velocity = u/&g&); 
dimensionless coordinate measured from wall 

Y J(sS) -. 
v ’ 

flow rate per unit width ; 
film thickness ; 
dimensionless film thickness ; 
eddy diffusivity ; 
= 1 + E/v; 
dynamic viscosity ; 
kinematic viscosity ; 
density ; 
surface tension. 

= 

Subscripts 
D, mass species diffusion ; 
M, momentum; 
2% intersection of equations (1) and (4) : 
t, turbulent. 

RECENTLY Chun and Seban [l] presented the results of an 
experimental study into heat transfer across evaporating 
turbulent falling films. They found h, cc Re0’4, whereas usual 
analyses e.g [2,3] based on the conventional hypotheses 
about turbulent transport that are consistent with pipe 
flow, predict h, cc Re”” in the limit of high Re (see Fig 1). 
Our purpose here is to present an analysis which success- 
fully predicts the Chun-Seban data, and which may also be 
used for film condensation provided that vapor drag is 
negligible. 

Our starting point is the observation that conventional 
hypotheses about turbulent transport do apply close to the 
solid wall, as demonstrated by the electrolytk mass transfer 
experiments of Iribarne et al. [4]. Any one of a number of 


